Fast computation of Tate pairing on general divisors for hyperelliptic curves of genus
نویسندگان
چکیده
For the Tate pairing implementation over hyperelliptic curves, there is a development by DuursmaLee and Barreto et al., and those computations are focused on degenerate divisors. As divisors are not degenerate form in general, it is necessary to find algorithms on general divisors for the Tate pairing computation. In this paper, we present two efficient methods for computing the Tate pairing over divisor class groups of the hyperelliptic curves y = x − x + d, d = ±1 of genus 3. First, we provide the point-wise approach, which is a generalization of the previous developments by Duursma-Lee and Barreto et al. In the second method, we use a Resultant for the Tate pairing computation. The approach by using the Resultant is approximately three times faster than the point-wise approach. These two methods are completely general in a sense that they work for general divisors, and they provide very explicit algorithms. keywords: Tate pairing; hyperelliptic curves; divisors; eta pairing; resultant; pairing-based cryptosystem
منابع مشابه
Fast computation of Tate pairing on general divisors of genus 3 hyperelliptic curves
For the Tate pairing computation over hyperelliptic curves, there are developments by DuursmaLee and Barreto et al., and those computations are focused on degenerate divisors. As divisors are not degenerate form in general, it is necessary to find algorithms on general divisors for the Tate pairing computation. In this paper, we present two efficient methods for computing the Tate pairing over ...
متن کاملTate Pairing Computation on the Divisors of Hyperelliptic Curves of Genus 2
We present an explicit Eta pairing approach for computing the Tate pairing on general divisors of hyperelliptic curves Hd of genus 2, where Hd : y 2 + y = x5 + x3 + d is defined over F2n with d = 0 or 1. We use the resultant for computing the Eta pairing on general divisors. Our method is very general in the sense that it can be used for general divisors, not only for degenerate divisors. In th...
متن کاملTate pairing computation on the divisors of hyperelliptic curves for cryptosystems
In recent papers [4], [9] they worked on hyperelliptic curves Hb defined by y +y = x+x+b over a finite field F2n with b = 0 or 1 for a secure and efficient pairing-based cryptosystems. We find a completely general method for computing the Tate-pairings over divisor class groups of the curves Hb in a very explicit way. In fact, Tate-pairing is defined over the entire divisor class group of a cur...
متن کاملEta Pairing Computation on General Divisors over Hyperelliptic Curves y2 = x7-x+/-1
Recent developments on the Tate or Eta pairing computation over hyperelliptic curves by Duursma–Lee and Barreto et al. have focused on degenerate divisors. We present efficient methods that work for general divisors to compute the Eta paring over divisor class groups of the hyperelliptic curves Hd : y2 = x p−x+d where p is an odd prime. On the curve Hd of genus 3, we provide two efficient metho...
متن کاملImplementation of Tate Pairing on Hyperelliptic Curves of Genus 2
Since Tate pairing was suggested to construct a cryptosystem, fast computation of Tate pairing has been researched recently. Barreto et. al[3] and Galbraith[8] provided efficient algorithms for Tate pairing on y = x − x + b in characteristic 3 and Duursma and Lee[6] gave a closed formula for Tate pairing on y = x − x + d in characteristic p. In this paper, we present completely general and expl...
متن کامل